SNOMED Clinical Terms Fundamentals

Penni Hernandez
Senior Terminologist, IHTSDO
Outline of presentation

- What is SNOMED CT?
- What is it for?
 - EHR, statements and expressions
- What kinds of things are represented?
- How is it organized?
- How does it fit into/with the Electronic Health Record?
- What additional components & essential materials should I know about?
 - Mapping, subsets, extensions, definitions, documentation, etc
- How can I suggest changes or improvements?
 - working groups, communication, governance
What is SNOMED CT?

- What is it?
- What does it do?
- Where did it come from?
- What is it made up of?
- How big is it?
What is SNOMED CT?

What is SNOMED Clinical Terms?

- **Name:**
 - Systematized Nomenclature of Medicine – Clinical Terms

- **Description:**
 - A work of clinical terminology

- **Main purpose:**
 - Coded representation of meanings used in health information
What is a clinical terminology?

- Terminology (ordinarily):
 - A structured collection of terms

- A clinical terminology
 - SNOMED CT is a terminology
 - consisting of terms used in health & health care
 - attached to concept codes with multiple terms per code
 - structured according to logic-based representation of meanings
Codes organized in a directed acyclic graph

- Each code is represented by a node in the graph
- Each relationship is an arrow
- There are no cycles
- Codes may have >1 outgoing arrow
 - if only 1 outgoing, you have a tree
 - but C.S. trees are upside down

What is SNOMED CT?
A compact disc with data files

What is SNOMED CT?

<table>
<thead>
<tr>
<th>CONCEPT ID</th>
<th>FULLY SPECIFIED NAME</th>
<th>CTV3 ID</th>
<th>SNOMED ID</th>
<th>ISPRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>210566005</td>
<td>Open wound of hand with tendon involvement (disorder)</td>
<td>S922.</td>
<td>DD-3317D</td>
<td>1</td>
</tr>
<tr>
<td>210567001</td>
<td>Complete division extensor tendon hand (disorder)</td>
<td>S9220</td>
<td>DD-008E6</td>
<td>1</td>
</tr>
<tr>
<td>210568006</td>
<td>Complete division flexor tendon hand (disorder)</td>
<td>S9221</td>
<td>DD-008E7</td>
<td>1</td>
</tr>
<tr>
<td>210569003</td>
<td>Partial division extensor tendon hand (disorder)</td>
<td>S9222</td>
<td>DD-008E8</td>
<td>1</td>
</tr>
<tr>
<td>210570002</td>
<td>Partial division flexor tendon hand (disorder)</td>
<td>S9223</td>
<td>DD-008E9</td>
<td>1</td>
</tr>
<tr>
<td>210571003</td>
<td>Degloving injury of hand (disorder)</td>
<td>S923.</td>
<td>DD-30125</td>
<td>0</td>
</tr>
<tr>
<td>210572005</td>
<td>Degloving injury hand, palmar (disorder)</td>
<td>S9230</td>
<td>DD-30126</td>
<td>0</td>
</tr>
<tr>
<td>210573000</td>
<td>Degloving injury hand, dorsum (disorder)</td>
<td>S9231</td>
<td>DD-30127</td>
<td>0</td>
</tr>
<tr>
<td>210574006</td>
<td>Severe multi tissue damage hand (disorder)</td>
<td>S924.</td>
<td>DD-00414</td>
<td>1</td>
</tr>
<tr>
<td>210575007</td>
<td>Massive multi tissue damage hand (disorder)</td>
<td>S925.</td>
<td>DD-00415</td>
<td>1</td>
</tr>
<tr>
<td>210576008</td>
<td>Open wound of hand, excluding fingers, NOS (disorder)</td>
<td>S92z.</td>
<td>DD-33163</td>
<td>1</td>
</tr>
<tr>
<td>210577004</td>
<td>Open wound: [finger(s) or of thumb] or [fingernail] or [nail] or [thumbnail]</td>
<td>S93..</td>
<td>R-F5944</td>
<td>1</td>
</tr>
<tr>
<td>210578009</td>
<td>Open wound of finger or thumb without mention of complication (disorder)</td>
<td>S930.</td>
<td>DD-3317E</td>
<td>1</td>
</tr>
<tr>
<td>125653000</td>
<td>Open wound of finger (disorder)</td>
<td>S9300</td>
<td>DD-33169</td>
<td>0</td>
</tr>
<tr>
<td>210579001</td>
<td>Open wound, finger, multiple (disorder)</td>
<td>S9301</td>
<td>DD-3317F</td>
<td>1</td>
</tr>
<tr>
<td>125654006</td>
<td>Open wound of thumb (disorder)</td>
<td>S9302</td>
<td>DD-3316A</td>
<td>0</td>
</tr>
<tr>
<td>210580003</td>
<td>Open wound of finger or thumb with complication (disorder)</td>
<td>S931.</td>
<td>DD-33189</td>
<td>1</td>
</tr>
<tr>
<td>210581004</td>
<td>Open wound: [finger or thumb with tendon involvement] or [finger with tendon injury]</td>
<td>S932.</td>
<td>R-F5945</td>
<td>1</td>
</tr>
</tbody>
</table>
What does it do?

- Facetiously: Nothing, it just sits there.
 - Until incorporated into software systems
Organisational background and history

- International Health Terminology Standards Development Organisation (IHTSDO)
 - A not-for-profit organisation incorporated in Denmark
 - Member Nations provide the resources for coordinated development and release of terminology products
 - Owns and governs SNOMED CT and antecedent works

What is SNOMED CT?

IHTSDO Meeting Sydney Australia
13 Oct 2011
Where did it come from?

- **College of American Pathologists**
 - SNOMED 2 (1979)* Most widely adopted version in pathology systems worldwide
 - SNOMED 3 ‘International’ (1993)
- **United Kingdom – National Health Service**
 - Read Codes ‘4-byte’ (1984)
 - Read Codes 2 ‘5-byte’ (1988)* Still the most widely used codes in GP systems in the UK
 - Clinical Terms version 3 ‘CTV3’ (‘Read Codes’) (1999)
- **A true confluence**
 - All codes in SNOMED RT and CTV3 are included in SCT

IHTSDO Meeting Sydney Australia
13 Oct 2011
What is SNOMED CT?

What is it made of?

- **Components**
- **So-called “core” components:**
 - Concept codes
 - Descriptions (terms)
 - Relationships
- **Other components:**
 - Reference Sets (RefSets), RefSet Members
 - CrossMap Sets, Cross Maps, Cross Map Targets
Concept Codes

- One code per meaning, one meaning per code
 - Strings of digits, length 6 to 18 (most commonly 8 or 9 digits)
 - 22298006 means “myocardial infarction (MI)”
 - 399211009 means “past history of MI”
 - Meaningful, but without embedded meaning within the code

- Codes vs Concepts vs Real things
 - Concepts are in people’s heads
 - Codes are in the terminology
 - The codes refer to real things in the real world
A term string is a sequence of readable characters
 E.g. “immunosuppression”
A “description” is a term attached to a concept
These are two different “descriptions” that have the same term string:
 - immunosuppression → immunosuppressive therapy (procedure)
 - Description ID = 507152014
 - Immunosuppression → immunosuppression (finding)
 - Description ID = 63394015
What is SNOMED CT?

Relationships

- **Can be of several types:**
 - **Definitional:** necessarily true about the concept
 - **Qualifiers:** may be added to specialize the concept
 - **Historical:** provides a pointer to current concepts from retired
 - **Additional:** allows non-definitional information to be distributed
How big is it?

- 283,000 Active concept codes vs. 295,542 July 2011
- 732,000 Active terms (descriptions) vs. 769,428 July 2011
- 923,000 Active defining relationships vs.

 - If you spent 1 minute examining each description,
 - Working 40 hrs/week (2400 minutes/week), it would take
 - 305 weeks (~6 years) to examine all the active descriptions

- **Scale** is a major issue in developing, using and maintaining it
IHTSDO Structure and Governance

GENERAL ASSEMBLY

- Harmonization Boards
- Management Board
- Affiliate Forum

- Content Committee
 - Working Groups

- Technical Committee
 - Working Groups

- Research & Innovation Committee
 - Research Teams

- Quality Assurance Committee
 - Working Groups

IHTSDO Meeting Sydney Australia
13 Oct 2011
What is SNOMED CT?

Requirements, benefits, users and uses

- **What does it do?** facetiously: Nothing, it just sits there.
 - Until incorporated into software systems

- **Really:** It enables semantic interoperability, when implemented in an electronic health record
 - Supports implementation of electronic health records
 - Decision support systems
 - makes them systematically maintainable, sharable

IHTSDO Meeting Sydney Australia
13 Oct 2011
Terminology enables decision support

- Influenza vaccination reminder
- decision support program criterion:
 - chronic cardiorespiratory disorders
- patient record:
 - mild persistent asthma
Purpose of the terminology

- To provide a consistent way of indexing, storing, retrieving and aggregating clinical data from structured, computerised clinical records

- In order to support clinical care
 - Recording statement about health and health care of an individual patient
 - Retrieving those statements according to their meaning
 - At various levels of abstraction
 - For clinicians, patient, researchers, organisations and other computer systems
To represent health information
- Recorded by clinicians
- At the level of detail they prefer

To retrieve and analyse health information
- Retrieving those statements according to their meaning
 - At various levels of abstraction
 - For clinicians, patient, researchers, organizations and other computer systems
Who uses it?

- Users:
 - Clinicians
 - The end users of EHRs
 - System developers & vendors / suppliers
 - System implementers
 - Hospitals, clinics, laboratories, etc
 - Policy makers (government, professions, etc)
 - Researchers
What are the uses?

- **Representation of health information**
 - Indexing & retrieval of health information generally
 - Recording health & care of individuals
 - with fidelity to the clinical situation
 - Record retrieval & analysis based on meaning
 - Important for decision support applications

- **More specific examples**
 - Public health reporting – infectious diseases, cancer, biosurveillance
 - Reminders and alerts for preventive care
Expected benefits

- Reduction of errors
 - Elimination of errors of omission via “reminders”
 - Elimination of errors of commission via “alerts”
- Monitoring and responding to trends & problems in the health of populations
- Expanding knowledge of diseases, treatments and outcomes
Building blocks

- **Concepts**
 - The anchors for meaning

- **Descriptions**
 - Terms (strings of readable characters) used to express the meanings of the concepts in human language

- **Relationships**
 - Concept-to-concept links used to express information in computer processable language
 - First purpose: formal logical meanings
 - Other purposes: tracking retired concepts, representing facts that may vary, and supporting post-coordination
What kinds of things have codes?

- Organizing the world into types or classes is the work of “ontology”
- SNOMED focuses on classes that are useful in health & health care
 - Situations with explicit context
 - Procedures
 - Findings & disorders
 - Events
 - Body structures, anatomical or morphologically abnormal
 - Things that contribute to illness:
 - Organisms, substances, forces, objects, social context,
 - Other things important for health
Situations with explicit context

- Statements with “context” are those that express something about: who, whether, and/or when
 - Who:
 - is it about the subject of the record, or someone else?
 - Whether:
 - for findings, is the finding present, absent, or unknown?
 - for procedures, was it done, not done, or planned, …
 - When:
 - was the statement about the present, past, or perhaps future?
Situation examples

- Family history of diabetes mellitus
 - Who: a family member of the subject of record
- Tetanus booster given
 - Whether: yes, the procedure was done
- Past history of pelvic fracture
 - When: sometime in the past
Findings & Disorders

- **Findings:**
 - fever
 - low platelet count
 - rash
 - normal blood pressure
 - knee jerk reflex 2+/4+

- **Disorders:**
 - sickle cell disease
 - Fanconi’s anemia
 - heart disease
Procedures

- Any type of action done intentionally as part of the process of delivering health care
 - Patient education
 - Surgical procedure
 - Cholecystectomy
 - X-ray of left wrist
 - Discharge from nursing home
 - Family counseling
What kinds of things are represented?

Events

- Occurrences, things that happen (not necessarily unintentional)
 - exposure to toxin
 - death
 - environmental event
 - homicide
 - travel
Observables

- Qualities, properties and other observable entities
- “Incomplete findings”, that is, findings without their values
 - blood pressure
 - age
 - respired oxygen concentration
 - ability to walk (“whether able to walk”, not “able to walk”)
 - histologic grade
 - lesion size
What kinds of things are represented?

“Value hierarchies”

- Anatomy
- Morphology
- Drugs
- Substances
- Devices
- Organisms
- Physical objects
- Physical forces
- Social context
What kinds of things are represented?

Miscellaneous

- Staging, scales, & other qualifier values
- Record artifacts
- “Special” concepts
 - Inactive
 - Navigational
- Linkage concepts
 - Attributes
How are the codes organized?

1) Directed acyclic graph
 - logical subsumption relationships, with a single root
2) Attributes with values
 - Necessarily true “existential restrictions”
3) Description logic definitions of each concept code
 - Structured combinations of isa’s and attribute-value relationships
DAG (Directed Acyclic Graph)

- Called the “is a hierarchy”
 - Represents logical subsumption
 - A isa B means all instances of A are also instances of B

How is it organized?
Relationships: isa examples

- Lung disease
- Pneumonia
- Infectious disease
- Infectious pneumonia
- Viral pneumonia
- Virus

IHTSDO Meeting Sydney Australia
13 Oct 2011
Attribute-value relationships

- attribute – value
 - Logical “existential restriction”
 - A rel B means that for every instance of A, there is at least one relationship “rel” with a value that is an instance of B
Attribute example: causative agent

- Lung disease
- Pneumonia
- Infectious disease
- Infectious pneumonia
- Viral pneumonia
- Virus

How is it organized?

IHTSDO Meeting Sydney Australia
13 Oct 2011
How is it organized?

Description logic definitions

- **Viral pneumonia**
 - Is-a infectious pneumonia,
 - Causative agent = virus
Combining isa and attribute relationships

- Lung disease
- Infectious disease
 - Infectious pneumonia
 - Viral pneumonia
 - Virus
 - Pneumonia

How is it organized?

IHTSDO Meeting Sydney Australia
13 Oct 2011
Where do the codes go in a record?

- Statements in EHR’s
 - Electronic health record is made up of a series of statements
- Codes are the values for fields/slots in the information model
 - Codes from the terminology fill in some or all of the statement body
 - Information model determines the fields/slots available
- Coordination required to avoid gaps & overlaps between
 - terminology model
 - Information model
Additional components & features

- History tracking
- Cross Maps
- Subsets & Reference Sets
- Extensions
History Tracking

- Each component is permanent
 - But sometimes we correct errors. Then what?
- Components may be marked inactive
 - A component status field is included for each component
 - Additional two fields: release date, and change type
- Historical references link inactive components to current (active) ones
- Application maintenance can use the history tracking mechanisms to:
 - Update applications with new releases
 - Properly conduct retrievals on data containing inactive codes
Cross Maps

- Cross mapping involves linking SNOMED CT to other terminologies
- Each cross map has a direction
 - Either from SNOMED to the other, or vice versa.
- Archetypal crossmap is from SNOMED to ICD (9 or 10 or variant)
- Usual use case for ICD:
 - I have a record. It needs to be assigned the right code.
 - NOS and NEC are meaningful and necessary
- Usual use case for SNOMED:
 - I have a patient. I can document all that is relevant, and my EHR will attach codes to much of it (not all).
 - NOS and NEC are meaningless
Reference Sets (RefSets)

- Formerly called “subsets”
- Define groups of SNOMED components to be used for a particular purpose
- Types of RefSets
 - Simple
 - Group
 - Tagged
 - Language
 - Navigation
 - Aggregation
 - Prioritized
Navigational RefSet Example

How a GP might like to navigate to Influenza A virus from “virus”:

- Virus
 - Influenza A virus

Six levels deep if you try to navigate the is-a hierarchy:

1. Virus
2. RNA virus
 - Enveloped ssRNA virus without a DNA step in life-cycle
 - Enveloped ssRNA virus without a DNA step with multiple-stranded negative-sense genome
3. Family Orthomyxoviridae
4. Genus Influenzavirus A
5. Influenza A virus
Making SNOMED Usable

- Requires design and selection of usable components
- Requires hiding some of the complexity from the users
- Requires software that enables the users to accomplish their goals
Extensions

- SNOMED CT Identifiers
 - Called “SCTIDs”
- Allow for a part of the code to identify a Namespace
 - A namespace is controlled by an organization other than IHTSDO
- Extensions should add content that is not required in the international release
 - Realm-specific content:
 - Otero County (Colorado) jail cell number
 - leave granted under the Mental Health Act 1983 (England and Wales)
There is a wealth of documentation available, often overlooked:

- SNOMED CT User Guide
- SNOMED CT Technical Reference Guide
- SNOMED CT Technical Implementation Guide
 - http://www.ihtsdo.org/fileadmin/user_upload/doc/
- Abstract Logical Models & Representational Forms
- Transforming Expressions to Normal Forms
- Reference Sets – Technical Specification
- SNOMED Interchange Format
Distribution files

- SNOMED CT is distributed in three “core” distribution files
 - Concepts (one row per conceptID)
 - Descriptions (one row per descriptionID)
 - Relationships (one row per relationshipID)

- The international release consists of a common set of these core files
- Each national release centre may also provide extensions to each of these files
Browsers

A browser generally
- Displays the components of the terminology
- Allows searching
- Allows navigation along the hierarchies
- Some may have more specialized functions

There are numerous freely available browsers
- Some examples include:
 - CliniClue (www.cliniclue.com)
 - SNOB (snob.eggbird.eu)
Classifiers

- A description logic classifier can:
 - Compare two expressions for subsumption or equivalence
 - Structure the is-a hierarchy
 - Identify expressions (including definitions) that match a query

- A few well-known DL classifiers include:
 - Apelon’s Ontylog
 - FaCT++
 - CEL
 - Racer and RacerPro
 - Pellet
Influencing SNOMED & making improvements

- Governance & meetings
- www.ihtsdo.org
- Collaborative web site
- Working groups
 - Project groups
 - Special interest groups
Meetings

- **In person**
 - General Assembly meets twice per year
 - Pattern has been for committees, working groups and Management Board to meet at same venue

- **Teleconferences**
 - Each committee & WG has its own schedule
Working groups

- Two types: Project Groups & Special Interest Groups

- Project Groups:
 - Focused on a particular task and project plan
 - Duration limited
 - Open to participation
 - Resourced according to the project needs

- Special Interest Groups:
 - Focused on a particular interest, community, or topic area
 - May be ongoing
 - Open to participation
 - Reliant largely on voluntary participation
Working Groups

- For a complete list of current working groups, see:
 - www.ihtsdo.org/about-ihtsdo/governance-and-advisory/working-groups/

Current SIGs include:
- Anesthesia
- Concept Model
- Education
- IHTSDO Workbench Developer’s Implementation
- International Family Practice/GP
- International Pathology & Laboratory Medicine
- Mapping
- Pharmacy
- Translation

Current Project Groups include:
- Anatomy Model
- Collaborative Editing Roadmap
- Event, Condition and Episode Model
- Family/GP RefSet & ICPC Mapping
- Machine & Human Readable Concept Model
- Mapping SNOMED to ICD-10
- Migration
- Observable & Infectious Disease Model
- Request Submission
- Substance Hierarchy Redesign
- Translation Quality Assessment
Influencing SNOMED & making improvements

Web site & collaborative site

- www.ihtsdo.org
 - Calendar
 - Official announcements
 - Contact information
- Collaborative site (https://csfe.aceworkspace.net/sf/sfmain/do/home)
 - Working group discussions
 - Agendas & minutes of committee & WG meetings
 - Special interest group collaborative sites
 - Access freely available, registration required to join, email: collabnet@ihtsdo.org
Questions?